"Astronomers Mystified: Quasars Don't Show Time Dilation"
by Lisa Zyga
Astronomer Mike Hawkins from the Royal Observatory in Edinburgh came to this conclusion after looking at nearly 900 quasars over periods of up to 28 years. When comparing the light patterns of quasars located about 6 billion light years from us and those located 10 billion light years away, he was surprised to find that the light signatures of the two samples were exactly the same. If these quasars were like the previously observed supernovae, an observer would expect to see longer, "stretched" timescales for the distant, "stretched" high-redshift quasars. But even though the distant quasars were more strongly redshifted than the closer quasars, there was no difference in the time it took the light to reach Earth.
This quasar conundrum doesn't seem to have an obvious explanation, although Hawkins has a few ideas. For some background, quasars are extreme objects in many ways: they are the most luminous and energetic objects known in the universe, and also one of the most distant (and thus, oldest) known objects. Officially called "quasi-stellar radio sources," quasars are dense regions surrounding the central supermassive black holes in the centers of massive galaxies. They feed off an accretion disc that surrounds each black hole, which powers the quasars' extreme luminosity and makes them visible to Earth.
There's also a possibility that the explanation could be even more far-reaching, such as that the universe is not expanding and that the big bang theory is wrong. Or, quasars may not be located at the distances indicated by their redshifts, although this suggestion has previously been discredited. Although these explanations are controversial, Hawkins plans to continue investigating the quasar mystery, and maybe solve a few other problems along the way. Hawkins' paper will be published in an upcoming issue of the "Monthly Notices of the Royal Astronomical Society."
0 Response to ""Astronomers Mystified: Quasars Don't Show Time Dilation""
Post a Comment